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On the parallel efficiency of the Frederickson-McBryan Multigrid

Algorithm

Naomi H. Decker *

Abstract

To take full advantage of the parallelism in a standard multigrid algorithm

requires as many processors as points. However, since coarse grids contain fewer

points, most processors are idle during the coarse grid iterations. Frederickson

and McBryan claim that retaining all points on all grid levels (using all pro-

cessors) can lead to a 'superconvergent' algorithm. Has the 'parallel superco_-

vergent' multigrid algorithm, PSMG, of Frederickson and McBryan solved the

problem of implementing multigrid on a massively parallel SIMD architecture?

How much can be gained by retaining all points on all grid levels, keeping all

processors busy?

The purpose of this work is to show that th_ pSMO algorithm! though it

achieves perfect processor utilization, is no more efficient than a parallel imple'

mentation of standard multigrid methods. PSMG is simply a new and perhaps

simpler way of achieving the same results. _

*Research supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23665-5225.





1. Introduction

The parallel multigrid algorithm of Frederickson and McBryan[3] is frequently mentioned

as an efficient method for implementing multigrid on a fine-grained SIMD architecture,

specifically the Connection Machine. At first glance, their use of multiple coarse grids (using

the same number of grid points on all grid levels) looks very promising since

1. the processor utilization rate is high

2. the convergence rate is very good, at least for simple model problems

3. it eliminates the aliasing between modes, so that a lower order restriction may be used

How much more efficient is this parallel 'superconvergent' multigrid algorithm (PSMG)

than the standard sequential algorithms implemented efficiently in parallel? In this note, we

compare the efficiency of PSMG to that of the standard red-black Gauss-Seidel multigrid

algorithm. This standard algorithm is unattractive for massively parallel architectures, since

most of the processors will be idle on the coarsest grids. That is, though an equal amount

of time is spent on all grid levels, there is not enough work on the coarse levels to saturate

the architecture. The hope of PSMG is that there is useful work to be done by otherwise

idle processom on the coarse levels. However, a careful calculation of computation and

communication costs shows that, for the Poisson equation model problem, for which the

PSMG algorithm was originally devised, the standard RB (red-black) algorithm and the

original version of PSMG have virtually identical efficiencies. Although the convergence

rate of PSMG is very good, the relaxation employed there is relatively expensive in both

communication and computation. Modifications of the original PSMG, using less expensive

relaxations, have been proposed, see [1], but it is shown in [2] that improvement over the

standard methods is limited - most of the processors are doing useless work on the coarse

grids.

2. Assumptions

In order to compare parallel superconvergent multigrid (PSMG) to a standard multigrid cycle

implemented in parallel, it is clearly insufficient to give processor utilizations or megaftop

rates. We must have a measure of processor utilization which reflects the amount of useful

work being done.

For direct methods one can estimate the total number of computation and communication

steps required to solve the problem completely. Similarly, for the FMG algorithm (full

multigrid algorithm), one can count the total number of steps required to solve the problem

to within truncation (discretization) error. When using an iterative technique, like a V-

cycle multigrid algorithm, which does not solve to truncation error, the efficiency of the

algorithm must be expressed as convergence rate per iteration, combined with an operation

count per iteration. This information generally suffices for comparing similar multigrid



algorithms, since the error reduction tends to be fairly uniform throughout the iteration
process. (Unlike, for example,conjugategradient algorithms, whereerror reduction tends
to occur in occasionalsuddenjumps). Thus for the kinds of multigrid being consideredhere
weneedto measurethe error reduction per iteration, and might alsolike an estimateof the
number of iterations required to bring convergenceerror below truncation error.

The discretization of the model problem determines the numerical stencils used, and
hencethe data dependenciesin the parallel loops. On paralle! architectures, small changes
in the discretization canhavea major impact on the behavior of both the numerical method.
We begin by assuminga five point discretization of the two dimensionalLaplacian, but we
makeno claims that this is the best possible.

The comparisonanalysisalsodependson the modelof computation. We wish to compare
standard multigrid to PSMG on its hometurf, a massivelyparallel machine in which there
areat leastasmanyprocessorsastherearegrid points (unknowns)in the discreteequations.
If there werefewerprocessorsthan grid points, then the efficiencyof PSMG would be much
poorer than standard red-blackalgorithms.

As well as being dependenton the machinearchitecture and the data dependenciesdic-
tated by the underlying p.d.e.,the computationand communicationcountsarevery sensitive
to algorithmic details. There are the obviouschoicesto be made about interpolation and
restriction operatorsand the order of the red-blacksweeps.There is alsothe usual trade-off
betweenthe computation cost and the communicationcost. In the caseof PSMG, the com-
putation and communicationappear to be minimized by the samealgorithm. In presenting
the standard methods,wherethere are a numberof simple variations on the basic method,
we consideronly thosealgorithms which are relatively efficient and can be easily compared

to the PSMG algorithm. Although there are ways to further optimize the standard multigrid

algorithm, either reducing communication at the expense of computation or vice versa, we

have sacrificed a little efficiency in the interest of simplicity and practicality.

2.1 Machine Assumptions

For computing the parallel computation and communication we have made the following

assumptions:

1. each processor can fetch only one value at a time

2. each processor can do only one add/multiply at a time

3. at any given time, every processor must either execute the same instruction as all other

processors or do nothing

4. each processor can use locally stored constants, which may differ from processor to

processor, to be used in the computational steps

5. there is no overlap of computation and communication



We also assume that the cross data communication traffic from the simultaneous relax-

ations on the multiple coarse grids doesn't degrade the overall performance of PSMG relative

to the standard RB algorithms.

2.2 Work measures

Using the above assumptions, we define our work units as follows.

computation

We define one (parallel) computation step to be one instruction sent to a subset of the

processors involving at most one add and one multiply.

communication

We define one (parallel) communication step on level k to be one instruction sent to a subset

of the processors involving at most one fetch of a value from a nearest neighbor (on level k)

processor.

To illustrate the method of counting computation and communication steps and to give

an example of the type of optimizing which has been assumed in the comparisons of the two

algorithms, consider the cost of finding the average of values of nearest neighbors at every

grid point,

_ij = (Ui+l,j -31- Ui--l,3 "_- Ui,3+l _- Ul,j--1)/4"

We assume that there are exactly as many grid points as processors. Suppose that each grid

point, (i, j), has been assigned to a processor, pij, and that p_j has u_j in its local memory.

At each processor, Pij, the following four operations can be performed simultaneously, the

average being stored in fi:

1. fetch u_,j+l; store in _ij

2. fetch ui-l,j; add to t_j; store in _ii

3. fetch u_,j-1; add to _ij; store in _j

4. fetch ui+l,j; add to _j and divide by 4; store in _j
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Using the above definitions,thisalgorithm takes three computation and four communication

steps.

However, the same calculation can be done with the following algorithm. At each pro-

cessor:

1. fetch u_+l,j+l; add to u_j; store in tij

2. fetch _i-l,j+l; add to t o and divide sum by 4; store in tij

3. fetch tij-1; store in u_i

i "- "_

i ,j-I

0 0

,J _ 0 0 I 0

Which takes only two computation and three communication steps.

We also note the following:

• The algorithm we consider involves a fixed number of iterations of the relaxation to be

performed on each grid level. Thus approximately the same amount of time is spent

on each grid.

• In general, we cannot afford to store log(N) worth of information on each processor,

so the use of simple injection is very important in the PSMG algorithm if all log(N)

grids are used.

• Because of the varying length scales, the communication costs are grid-dependent. All

comparisons of communication costs are made between corresponding levels.



2.3 Efficiency measures

The usualmeasures ofefficiency(p.53,[5])are:

log e
op(_) := Wiog P ( 1)

or

Pall := pl/W

where p is either the asymptotic convergence factor or some norm convergence factor and w
is the number of work units.

We find it more convenient to use the first measure which we refer to as the normalized

work unit. Using common logarithms, this is a measure of the work required per factor of ten

reduction in the error. We take p to be the asymptotic convergence factor unless otherwise

indicated.

3. The algorithms

Our comparison is made for the same model problem for which the original PSMG algorithm

was proposed: Poisson's equation in the unit square with periodic boundary conditions.

We assume that on each intermediate coarse grid the initial iterate is set to zero. Since

the same strategy can be used for both methods to solve, or approximately solve, the equa-

tions on the coarsest grid(s), it is enough to compare the computation and communication

requirements on all other grids. The comparison will be based on a count of the number

of computation and communication steps required for any two intermediate grids: for the

pre-relaxation (if used), coarse grid correction (residual calculation, residual restriction, the

projection of the coarse grid correction to the fine grid and update of u h) and the post-

relaxation. These computation and communication counts per grid level, per cycle, are then

normalized to give the work units per factor of ten reduction of the error.

Standard Multigrid

One of the most efficient sequential algorithms is obtained by using red-black Gauss-Seidel

sweeps as the relaxation. The operation count of RB multigrid depends on the order in

which the sweeps are performed. For example, if a black sweep precedes a residual transfer,

the residual,which is then zero at black points, needs to be computed only at red points.

The restriction operator can also ignore black point residual values. We have considered

various sweep order strategies, and invite the reader to try to £nd particular combinations
which further reduce the costs. We consider standard restriction and projection operators,

namely, full weighting (FW), half weighting (HW) and their adjoints relative to the discrete

L 2 inner product, FW* (bilinear interpolation), and HW'.
For example, consider using a black-then-red Gauss-Seidel iteration for the pre- and post-

smoothing steps, FW restriction and HW" projection. We denote the coarse grid correction



original PSMG

five point
mehrsteUen

standard RB

KB T I_B

asymptotic computation

convergence steps per

rate grid level

.063

.018

.074

17

20

13

14

communication

steps per

grid level

15

18

12

i0

normalized

comp. steps

per level

14.2

11.5

11.5

12.4

normalized

comm. steps

per level

12.5

10.3

10.6

8.8

Table 1: Comparisons for model problem

operator by T and represent this particular algorithm by the notation RB T RB. The red

sweep prior to the coarse grid correction insures that the residual is zero at all red points, thus

simplifying the restriction to a four point formula. The black sweep immediately following

the coarse grid correction eliminates the need to compute the projected correction at black

points. Thus the projection of the coarse grid correction at all red points which correspond

to coarse grid points is simply its value on the coarse grid, and at the other red points it

is zero. The RBT R.B can be implemented with 13 parallel computation and 12 parallel

communication steps per intermediate grid level and 17 computation and 15 communication

steps on the finest level.

It is also possible to reduce the communication to 10 steps by adding another compu-

tation step. Which of these implementations to choose obviously depends on whether the

computation or communication is more expensive, which is grid level dependent. See Table 1.

PSMG

For the five point discrete Laplacian, the relaxation used by Frederickson and McBryan in

PSMG is given by:

u h e-- u h +

Z2

Zl

Z2

Zl Z2

gO Zl ?.h

Zl 2; 2

6



where

?.,h -._ fh

i
-i

h2

for some parameters, zi, i = 0, 1, 2.

-I

4 -i u h,

-i

In the PSMG algorithm, there is no smoothing in the fine to coarse grid portion of the

cycle. In fact, assuming an initial guess of zero on each grid, the residuals need only be

computed on the finest grid. In addition, the residual transfer is straight injection, and

hence the residual on any coarse grid is precisely the residual at that point on the fine grid.

Their prolongation, when combined with the averaging of the four coarse corrections, is given

V h

by:

q2

ql

q2

ql q2

qo ql v 2h

ql q2

where v 2h is v (°'°), vO,0), v(O,1) or v0J), as appropriate. We assume that the optimal zl and

qi are known, but cannot be assumed to be zero or have any other fixed relationship to one

another.

The number of computation steps and the number of communication steps can be min-

imized simultaneously, requiring a total of 17 computation and 15 communication steps on

intermediate grids and 21 computation and 18 communication steps on the finest grid.

The table lists the asymptotic convergence rates for the RB standard multigrid algorithm,

calculated as in, for example, [4], and the asymptotic convergence rates given in [3] for PSMG.

Changing the discretization of the Laplacian by using the "mehrstellen" nine point formula,

they give a convergence rate of .018, but the number of computation and communication

steps increases. This is a slightly more efficient algorithm.

Normalizing the costs, i.e., finding the computation and communication costs per factor

of ten reduction in error (see equation 1), we see that the standard RB algorithms are more

efficient than the five point version of PSMG, and are essentially equivalent to the nine point

version of PSMG.

4. Conclusions

The use of multiple coarse grids per level is unattractive both from the point of view of

complicating the treatment of boundary conditions and from the point of view of an FMG

cycle where monitoring residuals provides valuable information about when sut_cient work

has been done on a given level. A global check of the residuals on each of the coarse



grids (recall, there are 0(4 k) coarse grids on the k 4- 1st level) is a communication-intensive

calculation, and relying on a single residual from each level could be unreliable.
Thus, we see that PSMG, which manages to keep N processors busy solving discretized

PDE's with N unknowns, is not significantly better than a reasonably ef_cient parallelized

version of the standard multigrid algorithms. PSMG is just as limited by the inherent

constraints of the multigrid techniques as the standard algorithms are.
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